The spinal GABAergic system is a strong modulator of burst frequency in the lamprey locomotor network.

نویسندگان

  • David E Schmitt
  • Russell H Hill
  • Sten Grillner
چکیده

The spinal network coordinating locomotion is comprised of a core of glutamate and glycine interneurons. This network is modulated by several transmitter systems including spinal GABA interneurons. The purpose of this study is to explore the contribution of GABAergic neurons to the regulation of locomotor burst frequency in the lamprey model. Using gabazine, a competitive GABAA antagonist more specific than bicuculline, the goal was to provide a detailed analysis of the influence of an endogenous activation of GABAA receptors on fictive locomotion, as well as their possible interaction with GABAB and involvement of GABAC receptors. During N-methyl-D-aspartate (NMDA)-induced fictive locomotion (ventral root recordings in the isolated spinal cord), gabazine (0.1-100 microM) significantly increased the burst rate up to twofold, without changes in regularity or "burst quality." Gabazine had a proportionately greater effect at higher initial burst rates. Picrotoxin (1-7.5 microM), a less selective GABAA antagonist, also produced a pronounced increase in frequency, but at higher concentrations, the rhythm deteriorated, likely due to the unspecific effects on glycine receptors. The selective GABAB antagonist CGP55845 also increased the frequency, and this effect was markedly enhanced when combined with the GABAA antagonist gabazine. The GABAC antagonist (1,2,5,6-tetrahydropyridine-4-yl)methylphosphinic acid (TPMPA) had no effect on locomotor bursting. Thus the spinal GABA system does play a prominent role in burst frequency regulation in that it reduces the burst frequency by < or =50%, presumably due to presynaptic and soma-dendritic effects documented previously. It is not required for burst generation, but acts as a powerful modulator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endocannabinoids mediate tachykinin-induced effects in the lamprey locomotor network.

The spinal network underlying locomotion in lamprey is composed of excitatory and inhibitory interneurons mediating fast ionotropic action. In addition, several modulator systems are activated as locomotion is initiated, including the tachykinin system and the metabotropic glutamate receptor 1 (mGluR1), the latter operating partially via the endocannabinoid system. The effects of mGluR1 agonist...

متن کامل

Cholinergic modulation of the locomotor network in the lamprey spinal cord.

Acetylcholine (ACh) was found here to be a strong modulator of swimming activity in the isolated spinal cord preparation of the adult lamprey (Ichthyomyzon unicuspis). During fictive swimming induced with either D-glutamate or N-methyl-D-aspartate, addition of ACh (200 microM) significantly reduced the cycle period of ventral root bursts to 54%, intersegmental phase lag to 32%, and ventral root...

متن کامل

Endogenous tachykinin release contributes to the locomotor activity in lamprey.

Tachykinins are present in lamprey spinal cord. The goal of this study was to investigate whether an endogenous release of tachykinins contributes to the activity of the spinal network generating locomotor activity. The locomotor network of the isolated lamprey spinal cord was activated by bath-applied N-methyl-D-aspartate (NMDA) and the efferent activity recorded from the ventral roots. When s...

متن کامل

Mechanisms of rhythm generation in a spinal locomotor network deprived of crossed connections: the lamprey hemicord.

The spinal network coordinating locomotion in the lamprey serves as a model system, in which it has been possible to elucidate connectivity and cellular mechanisms using the isolated spinal cord. Locomotor burst activity alternates between the left and right side of a segment through reciprocal inhibition. We have recently shown that the burst generation itself in a hemisegment does not require...

متن کامل

5-HT Modulation of identified segmental premotor interneurons in the lamprey spinal cord.

Ipsilaterally projecting spinal excitatory interneurons (EINs) generate the hemisegmental rhythmic locomotor activity in lamprey, while the commissural interneurons ensure proper left-right alternation. 5-HT is a potent modulator of the locomotor rhythm and is endogenously released from the spinal cord during fictive locomotion. The effect of 5-HT was investigated for three segmental premotor i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 92 4  شماره 

صفحات  -

تاریخ انتشار 2004